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ABSTRACT: Background. Survival studies on head and neck cancers
are frequently reported with inadequate account for competing
causes of death. Realistic descriptions and predictions of postdiag-
nosis mortality should be based on proper competing risks
methodology.
Methods. Prognosis of patients with oral squamous cell carcinoma
(OSCC) in terms of mortality from OSCC and from other causes, respec-
tively, was analyzed according to recent methodological recommenda-
tions using cumulative incidence functions and models for cause-
specific hazards and subdistribution hazards in 306 patients treated in a
tertiary care center in Northern Finland.

Results. More coherent and informative descriptions and predictions of
mortality by cause were obtained with state-of-the-art statistical meth-
ods for competing risks than using the prevalent but questionable prac-
tice to graph “disease-specific survival.”
Conclusion. From the patients’ perspective, proper competing risks analysis
offers more relevant prognostic scenarios than na€ıve analyses of “disease-
specific survival”; therefore, it should be used in prognostic studies of head
and neck cancers.VC 2016 Wiley Periodicals, Head Neck 39: 56–62, 2017
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INTRODUCTION
Reports of clinical trials on head and neck cancers contain a
variety of primary endpoints, the most popular recently
being “locoregional control,” “overall survival,” “local con-
trol,” and “disease-free survival.”1 Also, “disease-specific”
or “cause-specific” survival have been an often-used end-
point in trials but perhaps even more so in observational
studies addressing the value of prognostic markers. Yet,
from a patient’s perspective, other endpoints than overall
survival may be of limited interest. Overall survival
depends on mortality from other causes of death, too, apart
from that of the disease itself. Thus, the reality of compet-
ing risks deserves more attention than thus far mostly given
in survival studies.2 According to Mell et al,2 estimating
mortality from competing causes and evaluating the prog-
nostic role of factors related to it would be useful in identi-
fying treatment goals, tailoring individual cancer therapy,
and selecting patients most likely to benefit from more
intensive treatment.

Limited awareness seems to exist in the clinical community
of the importance and pitfalls of competing risks analysis.3

Quite often, competing causes of death are inadequately
handled by presenting na€ıve Kaplan–Meier curves on
“disease-specific survival,”3,4 the aim being to assess the “net

survival” (ie, probability of staying alive in a hypothetical sce-
nario in which the only cause of death would be the cancer
itself). Apart from problems in finding a meaningful interpre-
tation to such curves in a real-life clinical setting, this na€ıve
method treats deaths from competing causes as if they were
random or noninformative censoring, the latter being a key
condition for the validity of the Kaplan–Meier method. How-
ever, on reasonable grounds, this assumption can be ques-
tioned in most realistic instances.3,4 A prime example about
violation of random censoring is provided in the context of
head and neck cancers, knowing that their major risk factors,
tobacco and alcohol, are associated with several causes of
death.

Appropriate statistical methods for competing risks anal-
ysis have been introduced in oncologic journals already 25
years ago,5,6 and computational solutions have been avail-
able in major software environments, like R (R Foundation
for Statistical Computing, Vienna, Austria),4,7 SAS,8 and
Stata,9 also over a decade. In recent years, examples of
using these methods have started to appear in the clinical
literature on the prognosis of patients with cancers of the
head and neck.2,10–14 Thus, positive methodological devel-
opment has taken place, although typically in these reports
the analyses remain somewhat incomplete with regard to
recent recommendations15 for fuller analysis of competing
risks data. On the other hand, na€ıve Kaplan–Meier analysis
of “disease-specific survival” seems, unfortunately, to
prevail as the dominating approach with cause-specific
mortality even in leading clinical journals.
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In this methodologically oriented communication, we
illustrate how competing risk analysis is applied and what
kind of insight it offers when describing and predicting
cause-specific mortality in patients diagnosed with oral
squamous cell carcinoma (OSCC), attempting to follow
recent recommendations for analysis and reporting of
such data.15

MATERIALS AND METHODS

Patient data

A population-based retrospective cohort design, includ-
ing patients diagnosed with an OSCC between January 1,
1985 and December 31, 2005 from the 2 northernmost
provinces of Finland, was used. The total population of
the area is 738,000. Oulu University Hospital is the only
tertiary referral center in the area.

The data were obtained from the files of the Finnish
Cancer Registry and from the patients’ records at Oulu Uni-
versity Hospital. The Finnish Cancer Registry receives notifi-
cations from practitioners and hospitals that are required to
inform every new cancer diagnosed, and is considered to
contain practically all malignancies diagnosed in the country
since 1953.16,17 All patients diagnosed during 1985 to 2005
with cancer of the oral cavity (codes C02-C06 in Interna-
tional Classification of Diseases, 10th revision) who were
residents within the special responsibility area of Oulu Uni-
versity Hospital (covering the 2 northernmost provinces in
Finland), were identified from the Cancer Registry. Eligible
were patients whose cancer was histopathologically diag-
nosed as squamous cell carcinoma originating from the oral
cavity. Thus, cancers of the lips, larynx, and pharynx were
not included. The treatment of oral cancer was based primar-
ily on the TNM classification. The treatment planning was
done in a joint meeting with oncologists, head and neck sur-
geons, and plastic surgeons, and it followed the contempo-
rary suggested guidelines.18

The hospital records of the patients were reviewed, and
data on the following demographic and clinical items
were gathered: sex, age at diagnosis, tumor size (T), and
nodal involvement (N),19 as well as comorbidity at diag-
nosis assessed by the Charlson’s index.20 We restricted
the analysis to cover patients known to be M0 at diagno-
sis and for whom data on both T and N classification
were also available. Follow-up information was obtained
from the Finnish Cancer Registry, the records of which
are annually matched through computerized linkage
(based on personal identity codes), with the Cause of
Death Register maintained by Statistics Finland, so that
the dates and causes of death (also noncancerous causes,
both underlying and contributory causes of death) are
added to the records in the Registry. The Finnish Cancer
Registry compares the official causes of death of each
patient with cancer to all data available for that cancer,
and makes a judgment whether the patient died of that
cancer or something else. The classification of deaths into
the 2 categories in this study: (1) deaths from OSCC; and
(2) deaths of other causes, was based on that judgment.
The records of the Finnish Cancer Registry are also
regularly linked with the Central Population Register of
Finland where the correctness of the personal identity
codes is checked, and the complete name, vital status, possi-

ble date of death, or emigration, as well as the official place
of residence before the date of diagnosis are obtained.17

Follow-up of patients was started on the date of cancer
diagnosis and ended on the date of death, migration, or the
closing date of the follow-up, December 31, 2008.

This study was conducted in accordance with the ethical
principles of the Helsinki Declaration and with the approval
number STM/613/2005 of the Ministry of Social Affairs
and Health of Finland, as well as the ethical committee of
the University of Oulu and the Oulu University Hospital.

Statistical methods

Descriptive analyses of mortality from OSCC and from
other causes, respectively, accounting for competing risks
were performed by the well-known nonparametric estima-
tor4,21 of the pertinent cause-specific cumulative incidence
function, this method being known as the Aalen–Johansen
estimator in biostatistical literature.22 Curves of the Aalen–
Johansen estimates are presented together with those, known
as 1–Kaplan–Meier curves,9 that are based on the na€ıve
Kaplan–Meier estimates of “cause-specific survival,” in
which the competing events are treated as if they were inde-
pendent censorings.

After recent recommendations,15 we applied 2 different
regression approaches in parallel to analyze cause-specific
mortality: (1) conventional Cox regression for cause-
specific hazards; and (2) Fine–Gray model for subdistribu-
tion hazards. We first fitted Cox proportional hazards model
on the cause-specific hazards of death (ie, cause-specific
mortality rates) separately for the 2 outcomes: deaths from
OSCC and from other causes, respectively.15,22 In both
models, age at diagnosis was included as a categorical cova-
riate with 4 age bands. The following prognostic factors
were also treated as categorical: sex (female vs male),
tumor size (classes 2, 3, and 4, respectively, vs 1), nodal
involvement (class 1, and combined class 2 and 3, both vs
0), and Charlson’s comorbidity index (classes 1, and 21,
both vs 0). Based on the fitted Cox models for the cause-
specific hazards of both competing causes of death, we then
constructed predictions of cumulative incidence functions
(ie, of cumulative probabilities of death both from OSCC
and from other causes, respectively), by time since diagno-
sis for a few selected types of model patients representing
different prognostic profiles. In this prediction, we applied
a generalization of the Aalen–Johansen estimation adopted
for Cox modeling of cause-specific hazards.22

As the second regression approach, we fitted a Cox-like
regression model, known as the Fine–Gray model, for the
subdistribution hazards of death from the 2 distinct
causes.15,22 The subdistribution hazard of dying from a
given cause is a one-to-one mathematical transformation of
the cumulative incidence function or risk of death for the
same cause. A subdistribution hazard is different from the
corresponding cause-specific hazard, and the subdistribu-
tion hazard ratios, (antilogarithms of the regression coeffi-
cients in a Fine–Gray model) do not have such a direct
interpretation as the hazard ratios in a cause-specific hazard
model.15,22 However, prediction of cumulative probabilities
of dying from a given cause of death is slightly more
straightforward based on the Fine–Gray model, because the
cumulative incidence function is directly obtained from the
pertinent subdistribution hazard.
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All the computations were performed using the R environ-
ment for statistical computing and graphics,23 in particular,
functions survfit and coxph in package survival, function
Lexis in package Epi,24 functions cuminc and crr in package
cmprsk,7 and functions CSC and predictEventProb in pack-
age risk Regression.25

RESULTS
A total of 339 patients met the initial eligibility criteria,

of whom 306 (90%) were known to be M0 at diagnosis and
for whom data on T and N classes were also available. The
summaries of baseline characteristics are presented in Table

1. The median age of the patients was 65 years (range, 15–
93 years), and 152 were female (45%). In more than one-
third of the cases, the tumor size belonged to class T3 or
T4, and in almost one-third, nodal involvement was present.
About a half of the patients had some comorbidity accord-
ing to the Charlson’s index at the time of diagnosis.

Over one third (n 5 106) of the patients were observed to
die of their OSCC and somewhat less than that (n 5 94)
from other causes of death. The estimated cumulative inci-
dence function curve showing cumulative mortality from
OSCC (Figure 1A) has the characteristic pattern of a steep
increase right after diagnosis and stabilization at the level
of 35% by 10 years. No great difference exists between the
Aalen–Johansen curve and the na€ıve 1-Kaplan–Meier
curve. For other causes of death there is a steady increase in
cumulative mortality over time exceeding 40% by 20 years
since diagnosis, there being a bigger contrast developed
between the 1-Kaplan–Meier and Aalen–Johansen esti-
mates over time than for mortality from OSCC (Figure 1B).

Comparison of the estimated cumulative incidence func-
tions for the 2 causes of death across different ages (see Fig-
ure 2) shows how the gap between the Aalen–Johansen
estimates and the na€ıve 1-Kaplan–Meier estimates of cumu-
lative incidence function is particularly wide for noncancer
deaths in elderly patients. A disturbing feature of the na€ıve
“cause-specific survival” curves in this age group is that the
sum of the 1-Kaplan–Meier estimates for the cumulative
mortalities of the 2 causes exceeds 100% already by 7 years
since diagnosis. It is noteworthy that the clearly higher mor-
tality from OSCC in this age group, as compared to those
50 to 64 years old (Figure 2A), is compensated in a nearly
similar cumulative mortality from other causes in these
2 age groups (Figure 2B).

When modeling the cause-specific hazard and the subdis-
tribution hazard of dying of OSCC both with the Cox model
and with the Fine–Gray model, respectively, we found that
age, large tumor size, and local spread of tumor were
strongly predictive, but for nodal involvement the effect
was weaker (Table 2). No discernible effects were observed
for sex or Charlson’s index when all the other factors con-
sidered were accounted for. The results of the Fine–Gray

TABLE 1. Distributions of demographic and clinical characteristics of
306 patients with oral squamous cell carcinoma diagnosed during 1985
to 2005 in Northern Finland.

Characteristics No. of patients (%)

Age, y
15–49 56 (18)
50–64 101 (33)
65–74 80 (26)
75–93 69 (23)

Sex
Men 167 (55)
Women 139 (45)

Charlson Comorbidity Index
0 159 (52)
1 72 (24)
2 48 (16)
3–5 27 (9)

T classification
T1 76 (25)
T2 124 (41)
T3 56 (18)
T4 50 (16)

N classification
N0 211 (69)
N1 62 (20)
N2 29 (10)
N3 4 (1)

FIGURE 1. Cumulative incidence function curves of death from oral squamous cell carcinoma (OSCC) (A) and from other causes (B), respectively,
accounting for the competing causes (Aalen–Johansen estimate [AJ]), or ignoring them (1-Kaplan–Meier [KM] estimate), and the corresponding
na€ıve Kaplan–Meier curves of “cause-specific survival,” as well as cumulative incidence function curves for the 2 causes of death stacked upon
each other, and the overall survival (OS) curve (C). N5 number of patients still at risk at selected times after diagnosis.
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model for the subdistribution hazard of OSCC mortality
were very similar.

The cause-specific hazard of dying of other causes was
also positively associated with increasing age but less so
than for OSCC deaths (Table 3). However, when model-
ing the subdistribution hazard, the estimated subdistribu-
tion hazard ratio for the age groups of 65 years and more
indicated a nonelevated risk of death from these causes,
as compared with age group 50 to 64 years. This pattern
was different from that of the estimated cause-specific
hazard ratios but it was consistent with the marginal
cumulative incidence functions of Figure 2. According to
both models, mortality from other causes was also
dependent on sex and Charlson’s index, whereas no evi-
dence was found for nodal involvement having any effect
on this component of mortality. High T class appeared to
affect the cause-specific hazard but not the subdistribution
hazard of deaths from other causes.

Based on the fitted Cox models for the 2 cause-specific
hazards, we computed predicted probabilities of the rele-
vant outcomes by time since diagnosis for various types
of hypothetical patients representing different prognostic
profiles. In Figure 3 are illustrated such predictions for 4
model patients ranging from one with relatively good
prognosis (case A) to one with very poor prognosis (case
D). Cases B and C have a remarkably similar prediction
for total mortality, but the division of the latter into the 2
component causes is quite different, reflecting the con-
trasts in the patient profiles with respect to key tumor
characteristics and major determinants of mortality from
other causes. Analogous predictions were constructed
based on the fitted Fine–Gray models on subdistribution
hazards, and the results were very similar (data not
shown), except for the model patient (case D) with the
worst prognostic profile. In his case, the sum of the pre-
dicted cause-specific risks of death from the Fine–Gray
model exceeded 100% before 15 years since diagnosis.

DISCUSSION
We used a population-based cohort of 306 patients with

OSCC but without distant metastasis at baseline for dem-

onstrating how to analyze the prognosis of these patients
with the help of state-of-the-art statistical methods for
dealing with competing risks.3,15,21,22 Cumulative inci-
dence functions were plotted for mortality from OSCC
itself and from other causes, respectively, being estimated
by the Aalen–Johansen method.20,21 As recently recom-
mended,15 the impact of selected prognostic factors on
both outcomes was analyzed using 2 approaches: conven-
tional Cox regression was fitted for the cause-specific
hazards, and the Fine–Gray model for the subdistribution
hazards.15,22 Finally, based on the fitted Cox models,
individualized predictions on the risks of dying from the
separate causes of death were computed for 4 types of
model patients representing varying prognostic profiles.
To our knowledge, this is the first time that such a
comprehensive competing risks approach is applied in sta-
tistical analysis of cause-specific mortality of patients
with OSCC.

From the patient’s point of view, it is desirable to be
informed about realistic estimates of the overall risks of
death over time, not just because of cancer. For the clini-
cian, it is important to have access to such population-based
evidence on prognosis that is as all-encompassing as possi-
ble. Proper survival analysis by cause of death provides
more detailed and clinically relevant prognostic insight
upon simple analysis of overall survival. The novel
approach advocated here provides realistic mortality predic-
tions for various kinds of patients taking into account the
key prognostic factors. As such, it offers a comprehensive
prognosis, and can also serve as a tool in treatment plan-
ning. In particular, it overcomes the deficiency in curves
showing “disease-specific survival,” computed by na€ıve
application of the Kaplan–Meier method. Such a curve
attempts to describe survival experience in a fictitious
world in which the patients would not die from other causes
than their cancer and in which deaths from competing
causes that actually occurred are questionably treated like
noninformative censorings. This malpractice has been
repeatedly criticized in a multitude of biostatistical referen-
ces but also occasionally in oncologic journals already from
the 1990s.5,6,20,26

FIGURE 2. Cumulative incidence functions of death from oral squamous cell carcinoma (A), and from other causes of death (B), and for total mortal-
ity (C) in 2 age groups: 50 to 64 years, and 75 to 93 years, estimated by the Aalen–Johansen method (black lines, dashed for age group 50–64
years) and the na€ıve Kaplan–Meier method (gray lines). N5 number of patients still at risk at selected times after diagnosis in the 2 age groups.
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Cause-specific hazards and cumulative incidence func-
tions are the quantities of clinical and statistical interest
in the analysis of competing risks.15 The cause-specific
hazard ratios estimated from fitting a conventional Cox
regression model on the cause-specific hazard of death
from a given cause have a meaningful etiological inter-
pretation. Assessment of the real-life risk of dying from a
given cause, as estimated by the pertinent cumulative
incidence function, is fundamentally based on the cause-
specific hazards for all competing causes jointly. The
alternative modeling approach based on the Fine–Gray
model for the subdistribution hazards provides slightly
more straightforward predictions for the risks of death by
a given cause than that based on cause-specific hazards,
also offering a possibility for constructing easy-to-use
nomograms for risk prediction in a clinical setting.11,14

On the other hand, the subdistribution hazard ratios do
not have such a direct etiological interpretation as the
cause-specific hazard ratios of the corresponding cause-
specific hazard model. Yet, the cause-specific hazard ratio
and subdistribution hazard ratio associated with the effect
of a specific prognostic factor on the same outcome are
related, but generally in a complicated manner.26 Thus,
the effect of a covariate on the subdistribution hazard
(and consequently on cumulative incidence function) of a
given cause can be different from its effect on the corre-
sponding cause-specific hazard.

In our patient population, tumor size and nodal involve-
ment had a clear effect on the mortality from OSCC. The
risk of mortality increased with the tumor size and was
clearly largest in cases in which the tumor had spread to
adjacent structures. The effect of nodal involvement was

TABLE 2. Cause-specific hazard ratios and subdistribution hazard ratios associated with selected prognostic factors, estimated from fitting a Cox model
and a Fine–Gray model, respectively, on the mortality from oral squamous cell carcinoma, together with the pertinent 95% confidence intervals.

Cox model Fine–Gray model

Cause-specific hazard ratio (95% CI) Subdistribution hazard ratio (95% CI)

Age at diagnosis (vs 50–64 y)
15–49 0.68 (0.33–1.39) 0.74 (0.35–1.56)
65–74 1.30 (0.76–2.21) 1.28 (0.74–2.21)
75–93 2.73 (1.62–4.62) 2.46 (1.41–4.32)

Female sex 0.94 (0.62–1.40) 1.01 (0.66–1.53)
T classification (vs T1)

T2 1.78 (0.94–3.39) 1.76 (0.95–3.26)
T3 2.81 (1.40–5.66) 2.58 (1.31–5.06)
T4 4.59 (2.29–9.19) 4.18 (2.06–8.47)

N classification (vs N0)
N1 1.09 (0.67–1.79) 1.06 (0.64–1.77)
N2 or N3 2.02 (1.13–3.60) 1.84 (0.98–3.45)

Charlson Comorbidity Index (vs 0)
1 0.82 (0.50–1.35) 0.78 (0.47–1.28)
2–6 1.33 (0.82–2.15) 1.02 (0.63–1.67)

Abbreviation: CI, confidence interval.

TABLE 3. Cause-specific hazard ratios and subdistribution hazard ratios associated with selected prognostic factors, estimated from fitting a Cox model
and a Fine–Gray model, respectively, on the mortality from other causes of death, together with the pertinent 95% confidence intervals.

Cox model Fine–Gray model

Cause-specific hazard ratio (95% CI) Subdistribution hazard ratio (95% CI)

Age at diagnosis (vs 50–64 y)
15–49 0.38 (0.18–0.81) 0.49 (0.24–1.00)
65–74 0.99 (0.58–1.70) 0.94 (0.56–1.57)
75–93 1.75 (0.99–3.08) 0.95 (0.55–1.65)

Female sex 0.61 (0.40–0.95) 0.71 (0.46–1.09)
T classification (vs T1)

T2 1.24 (0.71–2.17) 1.11 (0.65–1.90)
T3 1.24 (0.62–2.47) 1.03 (0.54–1.96)
T4 2.51 (1.18–5.34) 0.86 (0.41–1.80)

N classification (vs N0)
N1 0.99 (0.57–1.70) 0.98 (0.58–1.67)
N2 or N3 1.44 (0.67–3.06) 0.85 (0.41–1.74)

Charlson Comorbidity Index (vs 0)
1 1.02 (0.59–1.76) 1.23 (0.75–2.04)
2–6 3.53 (2.09–5.95) 2.05 (1.22–3.44)

Abbreviation: CI, confidence interval.
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more modest even to the extent that metastasis in a single
small ipsilateral lymph node did not increase the mortal-
ity risk significantly. Only metastasis in larger or multiple
ipsilateral, contralateral, or bilateral lymph nodes
increased the mortality risk moderately. Sex and Charl-
son’s comorbidity index were associated with an elevated
mortality from other causes in both modeling approaches.
These similarities were actually what one would expect
based on both mathematical arguments and empirical
experience.3,15,26,27 With regard to the age at diagnosis,
we found somewhat discrepant results in our models con-
cerning the mortality from other causes of death, espe-
cially for more senior patients (�65 years). This apparent
paradox is explained by the fact that the subdistribution
hazard ratio reflects only partly the effect of the factor of
interest on the pertinent cause-specific hazard, but is also
essentially influenced by the effect of this factor on the
other component of mortality. Other scenarios concerning
cause-specific hazard ratios and subdistribution hazard
ratios and their mutual dependency in various circumstan-
ces are illustrated by Dignam et al.26

One important shortcoming of the Fine–Gray model is
that, in some cases, the sum of the predicted risks of
death from the separate causes of death based on individ-
ual subdistribution hazards may exceed 100%, this anom-
aly being actually realized in one of our model patients.
Such a disturbing feature is never encountered when risk
predictions are based on all cause-specific hazards,
because of the coherent mathematical representation of
each separate cumulative incidence functions in terms of
all cause-specific hazards. Finally, the approach based on
subdistribution hazards would not be applicable in a more
general multistate setting,4,28 which, in addition to deaths
from alternative causes, may contain the possibility of rel-
evant intermediate states in the postdiagnosis course of
disease, like local or regional recurrences. In such a set-
ting, the basic building blocks are transition-specific haz-
ards,28 including hazards of recurrence and cause-specific
hazards of death, the latter either without or with passing
via the state of recurrence.

Our empirical data had a few shortcomings. First, the
patient population was quite small in comparison with

FIGURE 3. Predicted probabilities of dying from oral squamous cell carcinoma (OSCC; lower curve & darker gray area) and from other causes (light
gray area between the 2 curves), and from all causes (total, the upper curve) by years since diagnosis for 4 kinds of model patients (T1, T2, and T3
refer to the tumor classification; N0, N1, and N2 to the nodal classification; and C to the value of Charlson’s index, respectively, in these patients).
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studies comprising representative material from thousands
of subjects.10,14 Second, only a very limited set of prog-
nostic factors were available. In many previous reports
applying competing risks analysis,2,10–14 more detailed
information on relevant baseline characteristics were
utilized. Smoking, in particular, would be an important
predictor of mortality for both causes of death. Unfortu-
nately, the clinical records available to us contained only
very deficient data on the smoking history of the patients.
Because of this, it was reasonable not to include smoking
in this modeling exercise, which obviously limits the gen-
eralizability of our empirical results. As to assignment of
the cause of death, we relied on the judgment made by
the Finnish Cancer Registry; primarily based on the offi-
cial death certificate but taking also into account the
recorded cancer history of the patient. This judgment,
although not perfect, is probably no more ambiguous than
any other cause of death assignment. We could also have
applied more refined modeling in our analysis (for exam-
ple, treating age at diagnosis as a continuous covariate
and suitable smoothing splines29 applied to describe its
effect and including relevant time by covariate interaction
terms for a possibly better fit of the cause-specific hazard
model for OSCC deaths in particular). We omitted these
complications in the interest of keeping this tutorial pre-
sentation concise and focused on the main principles of
competing risks analysis.

Previous studies2,10–14 addressing competing outcomes
in patients with head and neck cancer have typically lim-
ited their analytic effort to modeling only subdistribution
hazard but not cause-specific hazard, and predicting
cumulative incidence functions based on the fitted subdis-
tribution hazard model. In comparison to them, the main
strength of our study was that we conducted a full analy-
sis, including descriptive plots of cumulative incidence
functions, fitting cause-specific hazards by Cox regres-
sion, as well as subdistribution hazards by the Fine–Gray
model for both causes of death, and computing predic-
tions for risks of death by time since diagnosis for
patients with various prognostic profiles. Such many-
sided analysis has recently been recommended15 for com-
peting risks data, because it provides much more detailed
information and deeper insight on the prognostic problem
than analyses applying only Fine–Gray modeling and con-
ducted and reported for only one outcome.

A natural next step to enrich our analysis would be a
more comprehensive assessment of the prognosis of
patients with cancer, which requires inclusion of the pos-
sibility of local and regional recurrences and the impact
of them on the subsequent survival scenarios. Also, it is
desirable to be able to compute updated prognostic proba-
bilities for a patient, who has already survived, such as 1
year or 5 years, also conditional on whether and when a
recurrence has taken place. Multistate models4,28 have
previously been applied to such comprehensive assess-
ment of prognosis, at least for patients with breast
cancer.30,31
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